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Abstract. The usual scaling equations at a phase transition, employed out of their usual validity range, with
Tc a negative constant, fit properties observed in correlated electron systems with unmatched accuracy.
We illustrate this behavior with our data in Ce(Ru1−xRhx)2Si2 for x = 0.4 and 0.5 and comment these
results and what they imply physically.

PACS. 71.10.Hf Non-Fermi-liquid ground states, electron phase diagrams and phase transitions
in model systems – 75.40.Cx Static properties (order parameter, static susceptibility, heat capacities,
critical exponents, etc.) – 71.27.+a Strongly correlated electron systems; heavy fermions

The system Ce(Ru1−xRhx)2Si2 has a very rich phase dia-
gram which displays a variety of interesting behaviors [1].
The alloys with x = 0.4 and 0.5, in particular, are accepted
examples of “non-Fermi liquid” behavior exhibiting such
a characteristic signature as a logarithmic divergence of
Cp/T when the temperature decreases to zero [2,3]. We
have reanalyzed our susceptibility (2 K < T < 300 K) and
specific-heat (0.1 K < T < 17 K) data in this system using
the expressions
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proposed by Souletie [4] in an attempt to generalize to non
singular situations (Tc < 0) the consequences of a renor-
malization argument which leads to the classical scaling
theory in the case where Tc is positive. Here, ξ(T ), χ(T )
and Cp(T ) are respectively the coherence length, the sus-
ceptibility and the specific heat. ξ0 is an atomic distance,
C = Np2

eff /3k = Ng2µ2
BS(S+ 1)/3k the usual Curie con-

stant and A/T 2
c = (1−α)(2−α)R ln(2S+1) follows if the

total entropy between T = 0 and T = ∞ is R ln(2S + 1).
One has recognized the usual scaling relations for a phase
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transition with the usual definitions of their exponents ν,
γ, and α: they will be used here outside of their traditional
domain of application by permitting Tc to eventually as-
sume negative values. The expressions in terms of θ = νTc
merely insure that for θ a positive constant
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is an increasing function of 1/T which has everywhere a
well behaved expansion in terms of 1/T except at 1/Tc,
whatever the sign of Tc. The equation (2) shows that,
in the Arrhenius representation of ln(ξ/ξ0) vs. 1/T (see
Fig. 1), the sign of Tc determines the curvature in such a
way that the Arrhenius law of activation energy θ, which
corresponds to the Tc/T = 0 limit, separates the singular
solutions (Tc > 0) from the non-singular solutions: those
whose singularity lies on the analytical continuation of the
curve on the unphysical side of negative temperatures.

We believe that we should reserve the name of tran-
sition at Tc = 0 for the essential singularities which are
obtained in the Tc/T = 0 limit
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Fig. 1. ln(ξ/ξ0) = (−θ/Tc) ln (1− Tc/T ) vs. 1/T and the cor-
responding d lnT/d ln ξ vs. T diagram showing the typical in-
formation expected with Tc positive, nul or negative (Eq. (5)).
We took θ = νTc = 2/3, with Tc 1, 0 and −1.

while the solutions where Tc < 0 (Tc = −TK) and where
a power law commands the low temperature behavior
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belong to paramagnetism. In order to check the validity
of the equation (1) and if the sign of Tc is positive or
negative, we recommend to determine first the differential
form

d lnT

d ln ξ
= −

T − Tc
νTc

(5)

where ξ0 (or A or C) has been eliminated. By plotting
d lnT/d ln(χT ) or d lnT/d ln(CpT

2) vs. T , straight lines
are obtained, if the approximation is valid, which intersect
the temperature axis at Tc and the ordinate at 1/γ or at
1/α respectively (Fig. 1).

Figure 2 shows d lnT/d ln ((χ− χD)T ) vs. T for
Ce(Ru1−xRhx)2Si2 with x = 0.4. The linear plot extends
over all the range up to 180 K although the scatter in-
creases at higher temperatures. The following equation

χ− χD = χth =
C

T

(
1 +

TK

T

)−γ
(6)

fits the data of the experimental susceptibility (see Fig. 3)
for x = 0.4 and 0.5 up to 300 K with C and TK given
in Table 1 which are determined from Figure 2. χD was
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Fig. 2. d lnT/d ln((χ−χD)T ) vs. T below 300 K in the x = 0.4
alloy. Notice that a unique regime, with Tc < 0 and γ slightly
smaller than one (see insert), describes the situation below
180 K. χD = −0.000 85 e.m.u. is a small diamagnetic correction
attributed to the matrix.

introduced to account for a lattice contribution in addi-
tion to the contribution from the Ce atoms. Here χD is a
small diamagnetic term much the same for x = 0.4 and 0.5
and for other concentrations x which we have measured.
The incidence of this contribution is better seen at high
temperatures where χDT dominates the temperature de-
pendence of χT . On the other hand, χD is negligible at
lower temperatures where C, TK and γ are actually deter-
mined. The asymptotic Curie constant C is estimated to
be 1.237 e.m.u. in the limit T →∞ and is consistent with
an effective moment peff = 3.15µB which is larger than
2.5 µB the theoretical value for ionic Ce3+. A fascinating
point is the fact that our exponent differs from 1 by an
amount which is small, but larger than the experimental
error (see insert Fig. 2). As a result, our model proposes
an expression for the susceptibility which actually diverges
with a very small exponent
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instead of reaching a constant in the limit where T = 0 as
would be the case with γ = 1.

Most of what we said for (χ − χD)T can be repeated
for (Cp − Clatt )T

2. We approximate the contribution of
the lattice by Clatt/(J/molK) = 6.07 × 10−3 T/K +

2.66× 10−4 (T/K)
3

which fits the measured heat capac-
ity of the non-magnetic isoelectronic system La2Ru2Si2 in
this range. For obvious reasons, though, the accuracy on
d lnT/d ln[(Cp − Clatt)T

2] is not comparable to that ob-
tained on the d lnT/d ln[(χ−χD)T ]. It is sufficient however
to observe that there is a linear regime for T <9 K with
a (wide) range of possible values for TK which includes
28 K deduced from the susceptibility and an equally wide
range of acceptable values of α all close to 3 but actu-
ally slightly smaller than 3 (notice that the usual restric-
tion α <1 which insures the finitude of the entropy when
Tc > 0 does not hold anymore when Tc < 0 [4]). An
optimization, restricted to the data below 9 K and with
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Fig. 3. The antiferromagnetic character of the interactions
is insufficient to prevent the susceptibility to diverge but it
diverges with a small exponent. The fit to equation (6) accounts
for a small diamagnetic contribution χD = −0.000 85 e.m.u. of
the lattice. The error is everywhere smaller than 1% of the
smallest susceptibility measured.

Table 1. We show lines 1 and 2 for the x = 0.4 and the x = 0.5
alloys respectively the parameters C, γ, TK and χD derived
from our fit to the susceptibility data and the additional two
parameters A and α deduced from our fit to the specific heat
(columns 1 to 7).

x
C

e.m.u./mol
γ

TK

K

χD

e.m.u./mol

A

J K/mol
α

0.4 1.24 0.96 28.4 −0.00085 9906 2.86

0.5 1.19 0.89 29.5 −0.00065 8310 2.75

TK = 28 K imposed, leads to the following expression (see
Fig. 4):
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with A and α given in Table 1. From the value of A we cal-
culate an asymptotic value for the entropy between T = 0
and T =∞ of 1.33R ln 2. At the same time the difference
Cp − Clatt − Cth becomes sizeable over 9 K giving some
support to the speculation that there might be a second
anomaly of magnetic origin, centered at higher tempera-
ture and whose position is determined by the splitting of
the crystalline field as is often the case with cerium.

We have already stressed that the exponent α of CpT
2

in equation (8) is very close to 3 but still smaller than 3.
For this reason Cp/T diverges with a very small exponent
instead of going to a constant:
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Because ε′ is so small, the exponential in the second mem-
ber can be developed as 1 + ε′ lnTK − ε′ lnT over a wide
range of temperatures: actually if ln(T/TK)� 1/ε′. This
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Fig. 4. The magnetic contribution to the specific
heat below 9 K is fitted by the equation Cth(T ) =
(A/T 2) (1 + (28 K)/T )−α. The amplitude of A with α = 2.86
(Tab. 1) leads to an entropy S = 1.33R ln 2 between T = 0
and T∞. The excess contribution over 10 K signals, possibly,
a second magnetic anomaly, centered at a higher temperature
as is usual with Ce.
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Fig. 5. The success of the semilogarithmic representation of
Cp/T vs. lnT results from the fact that Cp(T )/T diverges with
a very small exponent (Eq. (9)) because the exponent α of
CpT

2 is very close to 3.

is the reason for the success of the semilog representation
which is currently considered as the signature of the “non-
Fermi liquid” behavior (see Fig. 5). As for TK = 28 K
which is our unique temperature scale it is connected by
our model to the temperature Tmax of the maximum of
the specific heat by the relation TK = 2Tmax/(α − 2).
It is therefore related to the usual Kondo temperature
T ∗K = 2.2Tmax by the equation T ∗K = 1.1(α− 2)TK .

Our approach has been motivated by the simple idea
that the coherence length could be constructed by steps in
a hierarchical way, with the same recipe relating one stage
with the other of the renormalization procedure. Then, the
following recipe
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leads, if we iterate, to equation (1) and to critical scaling
if Tc > 0. But if we look for non-singular solutions we have
no reason to ignore those which are generated if Tc < 0.
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These solutions fit our experiments with the x = 0.4 and
0.5 samples down to TK/10 for the susceptibility and to
TK/100 for the specific heat with an accuracy such that
any low temperature trend which would eventually drive
χ and Cp/T to a constant, would appear as the result of a
crossover induced by new circumstances. In the insert of
Figure 2 the data below 2 K would then align on a distinct
line aiming 1 at T = 0 and which we would associate with
the new regime. For ε and ε′ finite this raises a difficulty as
we predict a divergence of both χ and C/T in distinction
with the current renormalization group theory [5] which
predicts that both quantities reach a finite limit when T
cancels in 3d-antiferromagnetic itinerant fermion systems
even in non-Fermi liquid state.

This leads us to the most intriguing question perhaps
that this analysis raises: why do we have these special
values of the exponent like γ = 1 and α = 3 and why
not exactly these values? If it is confirmed that some par-
ticular values exist this opens the possibility to create a
classification, based upon numbers, of subtle qualitative
differences which are reported in these systems. Would
this mean that we have “universality classes” when ξ(T )
diverges as this is the case with standard phase transi-
tions in the vicinity of Tc? As for the reasons why our
exponents are close to but distinct from integers . . . ? Like
with the phase transitions, the problem of disorder and
of its pertinence will have to be raised, specially because
these behaviours are often observed in alloys as this is the
case in this paper. Would some Harris criterion maintain
us apart from plain universal behaviour? We notice, in
support of this interpretation that the ε are not the same
for x = 0.4 and x = 0.5 as if the disorder was introduc-
ing some kind of distortion of the dimensionality. Notice
that if ε and ε′ cancel (in the limit of zero disorder for
example), our model predicts a constant T = 0 limit in
agreement with the renormalization group theory [5]: the
disagreement however persists at higher order because the
theory predicts deviations to this constant limit which are
proportional to T 1/4 for χ and to T 1/2 for C/T ( for z = 2
at d = 3) while our expansions (Eqs. (7, 9)) are analytical
in T .

Because the equations (1) are exactly the same scal-
ing equations than in critical scaling, it is difficult to ig-
nore some problems that this discussion may arise among
phase transition experts. The great extension of the tem-
perature range itself, may appear as a surprise to many
as it is generally considered that the validity of the equa-
tions (1) is restricted to a narrow “critical regime” near Tc
in the case where Tc is positive. We want to stress again
that, often, the appreciation of what the extension of this
range should be is based upon an artefact: people reason
that since we are to work close to Tc, it is acceptable to
identify T with Tc when it is not in a difference T − Tc;
they thus artificially generate a regime near Tc where it be-
comes necessary to stay. If one uses for example (T−Tc)−γ

rather than equation (1), one loses the high tempera-
ture Curie law. Equation (1), by contrast, works well up
to the highest temperatures and has in particular the

correct Curie-Weiss limit C/(T − θCW ) with θCW = γTc
[6,7].

We have been nevertheless surprised by the Figure 2
and the fact that a unique regime is obtained between
2 K and 180 K. Not only we do not see any sign of a crit-
ical regime but neither do we see any sign of a “Griffith’s
temperature” over which the Curie law is strictly obeyed
because, say, the temperature is larger than the largest
interaction and the system is not capable to sustain any
correlation at any range. Even the flattening observed over
180 K for both samples, if we are to take it seriously, is
not the sign of the Curie law. It is the sign of a power
law χT ∼ AT 1/7.5 = AT 0.13 and the power which governs
the divergence of the susceptibility markedly differs from
one. By the way, one astonishing fact perhaps in these sys-
tems is that the Curie law remains an asymptotic limit.
Nowhere at finite temperature, it is actually observed.

Of course, it would be extremely interesting to know
if this low temperature scaling which we have described
in non-Fermi systems signals or not the universal “cross
over” towards Fermi-liquid behaviour which some models
anticipate [8]. In order to obtain some answer we have
extended our analysis to other cases which show standard
Fermi-liquid behaviour. Preliminary results are shown in
reference [9]. A complete discussion is under preparation.
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